
Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 1 of 18

Software Testing

Test Design and the Project Life Cycle

Prepared for Dr. Stephen A. Bernhardt

at the University of Delaware

on December 18, 2002.

By Derek Callaway

English 410, Section 11

Technical Writing

Abstract

The software development process consists of an indeterminate number of
fundamental steps that together comprise the project life cycle. All of these steps
carry out software testing in one form or another. Some organizations have an
entire team delegated exclusively to software testing. (Royer 16-17,20) As a
result, a substantial amount of a software development project’s budget is
allocated solely toward testing. This establishes the need to utilize formal
techniques in order to trim cost. (Amman and Black, Coverage 20) Such

techniques are the subject of an ample amount of scholarly investigation and are
generally classified into two complementary integration approaches (top-down
and bottom-up) and fall into one of a pair of distinct methods (black-box and
white-box). In this report, the distinguishing characteristics and merits of each are
presented, as well as their relative disadvantages and ways to mitigate their
limitations.

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 2 of 18

Table of Contents
Introduction
 Erroneous computing
 error
 fault
 failure

 Test Design Methods
 Black-box
 Irrelevant Variable Removal
 Monitored Variable Abstraction
 Bounded Timers
 Semi-Automated Abstraction

 Temporal Strength Reduction
 Ubiquitous Abstraction
 White-Box
 Path Testing
 statement coverage
 decision coverage

 condition coverage
 decision/condition coverage
 multiple/condition coverage
 Issues in Structural Testing
 Race Conditions
 Deprecation and Unsupported Code . . .

 Peaceful Co-existence
 Hardware Inconsistencies
 Project Life Cycle
 Requirements Definition
 Top-level Design
 Data Flow Diagrams

 Detailed Design
 Coding and Unit Testing
 Component and Integration Testing
 Top-down
 Breadth-first
 Depth-first

 Bottom-up
 Mixed
 Sandwich
 CI Level Testing
Conclusion
Bibliography

3
3
3
3
3

4
5
5
5
5
6

6
7
7
8
8
8

8
8
8
9
9
10

10
10
11
12
12
12

13
13
13
13
14
14

14
15
15
15
16
17

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 3 of 18

Introduction

Inevitably, human imperfection will be a factor in any computational endeavor. As
the old saying goes, a machine is only as perfect as its inventor. A typical piece
of software that has utility will include many people in its life cycle. (Royer 3) In
order to rectify the mistakes of any individual involved with a particular software
project, a certain amount of testing must be applied. There are many things to
take into consideration when determining the appropriate way to go about said
testing. (Demillo et al. 27-28; Amman and Black, Abstracting 5)

Erroneous Computing
Computers users are people that basically instruct a machine to perform switch
toggles. These switch toggle sequences tend to become very large rather
quickly. With such a lengthy list of ones and zeroes, the electronic device is
destined to go astray in some manner of indirection from a human mistake.
Computational mishaps can be described by the terminology that follows.

 error – That which is caused by a human; this could be anyone related to
project including but not limited to programmers, designers, and end-
users. (Royer 3)

 fault – An error that causes software to behave unexpectedly. (Royer 5)
 failure – Faults that prevent the software from executing. (Royer 5)

Encountering erroneous computing in software is essentially inescapable for all
those involved. Errors in computer science are the result of a person that is
ignorant. This ignorance is what a software development process strives to
regulate through testing.

Test Design Methods

Test design falls into two clearly outlined methods called black-box and white-box
testing. They have many other self-evident names. Black-box test design is
sometimes called behavioral, functional, opaque-box, or closed-box. White-box
testing is also called structural, glass-box, or clear-box. (Rivest) Deciding which
test design method to utilize usually depends upon the current step in the project
life cycle.

Test methods can be done by a human or a computer. Manual testing is
performed by a human. Automated testing is carried out by a computer. Albeit

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 4 of 18

faster and quite effective in many contexts, automation is not always fruitful.
Goldfine reports on a research initiative by the National Institute of Standards
and Technology (NIST) in which two programmers spent over 36 hours each
creating automated tests using Sun Microsystems’ Assertion Definition Language
(ADL). The automata were used to test conformance of four system functions to
Portable Open Systems Interconnect (POSIX) standards. The final test results
were in a large part inconclusive. (1, 2, 5, 29) One should be aware of the
implications of manual and automated testing and how they relate to the two
primary test design methods.

Black-Box

Black-box is a test design method which verifies that the functionality of a
program is proper. It can be defined as determining which inputs produce
faulty outputs. To do this, input sets, or test cases must be generated from
software specifications. (Demillo et al. 20, comp.software) Luckily, there
are existing algorithms that are extremely useful for automating test case
generation. In particular, there are algorithms for computation of
permutations and combinations. (Goodaire and Parmenter, 213-218)
Specifications can be acquired from an authoritative manual, design
documents, development files, or even word-of-mouth for lack of
something more official. The documentation of other component software
such as operating systems, shared interfaces, and specialized execution
environments may also come into play. A human software tester could
arduously carry out the analysis of specifications by looking over them
carefully or a computer could “grok” the specs automatically.

As should be expected, there are a few very tough problems existent in
black-box testing design. If test automation is desired, a plan of attack
must be formulated to tackle these problems. First of all, one must realize
that initial and successive input may contribute to putting the program into
an extremely large number of possible states. In some cases, the number
of potential states may be uncountable. Program output is derived from
these internal execution states and is the predicate of a faulty program.
(Allman and Black, Coverage 5) Furthermore, combinatorial algorithms

likely to be used for generating test cases can be NP-complete. This
means that they are calculated in nondeterministic polynomial time. In
other words, there currently exists no efficient solution to the computation
that the algorithm addresses. (Goodaire and Parmenter 254) As a result, it
is often necessary to systematically reduce the spaces that are
representative of conceivable input and output; anything that operates
along the lines of this conjecture is called a reduction method. The

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 5 of 18

following subsections present some effective ways to deal with these
problems.

Irrelevant Variable Removal

Irrelevant variable removal depends on the notion that if some
property holds for a specification, variables that don’t relate to this
property are not crucial to testing. This idea can be extended into
partially relevant variable removal by eliminating variables from a
problem that relate to one or few properties. (Allman and Black,
Coverage 5) As a rather simple example, envision a program with a

new version in which the functionality of a particular input option
from a previous release was removed but the optional input was
retained for backward compatibility. This input option can be
removed from the test set.

Monitored Variable Abstraction

Allman and Black nicely summarized this technique as, “if only
certain values or ranges of a monitored variable influence the
values of other variables, the monitored variable may be replaced
with an abstract variable.” (Abstracting 5) Take for instance an

application that expects as input an integer value from a specific
range. Input possibilities can be abstracted into three quantities that
are less than the range, in the range, and greater than the range.
So, if the range were from -10 to 10, the lesser variable could take
the value -15, the in range variable might be set to 5, and the
greater variable could be defined as 15.

Bounded Timers

The passage of time inside a computer may not coincide with time
in the real-world. A process may be shown incorrect if operations
are not performed in a suitable length of time. Timers with lower
and upper bounds on estimated time intervals between events can
be used to catch a fault. (Allman and Black, Abstracting 6) If a

software specification correctly says that a program will perform an
action every ten seconds then it must, else it has been
implemented incorrectly.

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 6 of 18

Semi-Automated Abstraction

Semi-automated abstraction, another approach to space reduction

is based upon transitions between program states. Initially, a
complete list of transitions between abstract states is compiled. If
the existence of the transition between two abstract states is
disproved, that transition is removed from the list of cases to test. .
(Allman and Black, Abstracting 6) Take for example a calculator

program that has five states: a beginning state, an input state, a
calculation state, an output state, and an end state. The beginning
state displays some program information then gives control to the
main program loop is made up of the input, calculation, and output
states. The input state receives the input and computes it by
moving on into the calculation state. The result is displayed in the
output state and the program returns to the input state. The end
state is reached when a special command is given as input.
According to this specification, this program may not proceed
directly from the beginning state to the end state; there are middle
states to be modeled. It also shows that the program cannot
changeover from the input state to the output state. The beginning
to end and input to output transitions could be deleted from the list
of all transitions for the calculator program’s testing. Falsifying
transitions is a fairly complicated procedure. Nonetheless, semi-
automated abstraction can turn out to be very useful, especially
when used in conjunction with other techniques.

Temporal Strength Reduction

In order to test a computer program with many states, previous
execution states must be taken into account as they relate to the
current state. Instead of saving previous states, traits describing the
current state should be saved before moving onto the next in the
interest of storage space preservation. . (Allman and Black,
Abstracting 6) For example, if specifications require that at each

successive state a integer variable needs to be greater than a
certain number, then compute the truth value of this specified
predicate instead of storing the number and analyzing it later. This
technique saves storage space and facilitates early fault detection.
Another good thing about this technique is that it can detect faults

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 7 of 18

as they happen as opposed to when the tested program is finished
executing.

Ubiquitous Abstraction

As with many aspects of software testing, a conservative blend of
techniques is most effective. Using a variety of reduction methods
in all sections of the testing process has been named ubiquitous
abstraction. If the current abstractions fail to prove the existence of
a fault they can be particularized further and tested again. (Allman
and Black, Abstracting 6) Black-box testing in this manner helps

minimize costs. Program faults will be discovered earlier which is a
good thing because the later they are noticed the harder they are to
fix. Not detecting an error in the current step of the software
development process causes it to propagate into future steps.

Do not underestimate the profound effect that these approaches can have
on an input space. Of course, the output space may be partitioned as well
but partitioning the input space is especially useful because it reduces the
number of cases to be tested. Consequently, the number of times that the
program must be executed during a test phase is also reduced. Input
space partitioning is a reduction method that divides program inputs into
equivalence classes. (Demillo et al. 20) This division can be accomplished
by the aforementioned techniques. The equivalence of the members of
each partition can be approximated in order to preserve computational
resources.

Good judgment must be used when deciding upon how to implement a
black-box test so that the usefulness of the method is maximized. Typical
software usage can be regarded as black-box testing and makes up a
large part of software validation. Remember that black-box testing is
limited to dynamic analysis.

White-Box

White-box test design affirms the structural integrity of a given software
project. It is characterized by the inspection of program instructions or
source code. (Demillo et al. 21, comp.software.testing) Naturally, white-
box test methods are part of the coding and unit testing stage of the
program’s life cycle. (Falk, Kaner, and Nguyen 41) Code walkthroughs, a

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 8 of 18

form of white-box testing have been shown to be just as good as dynamic
testing by a non-author. (Falk, Kaner, and Nguyen 46)

Having access to the program’s source gives a tester a good guess as to
which inputs will cause a transfer of program control to take place.
Henceforth, it is easier to determine which execution paths need to be
tested. (Falk, Kaner, and Nguyen 46; Royer 104) A path is regarded as a
unique set of transitional states that take a program from start to finish.
The precise path taken is determined by program logic. (Falk, Kaner, and
Nguyen 43-44) Idealistically, a complete white-box test would cover all
possible paths, but this is likely to be impractical given resource and time
constraints for a sizable project. (Royer 104) Sharply defined strategies
must be used for measuring the effectiveness of path testing.

Path Testing

Describing the coverage of possible execution paths in white-box
testing is done in a number of different ways. The fundamental
measures for path testing are statement coverage, decision
coverage, and condition coverage. (Kit 91; Falk, Kaner, and
Nguyen 43) Not too unsurprisingly, an actual software situation may
employ a mixture of these three techniques. All coverage types
stem from statement coverage since statements are the primordial
units of source code. Following are brief definitions of each
including a few hybrids.

 statement coverage – All statements are executed at
least once. (Kit 91) It may sometimes be referred to as
line coverage. (Falk, Kaner, and Nguyen 43)

 decision coverage – Statement coverage and evaluation

of each decision’s consequents. (Kit 91; Falk, Kaner, and
Nguyen 43) This is also called branch coverage. (Kit 89)

 condition coverage – Statement coverage and evaluation

of each way that a branch outcome may be decided.
There may be many ways that a condition can return the
same value. (Falk, Kaner, and Nguyen 44)

 decision/condition coverage – A combination of

statement, decision, and condition coverage. (Kit 91)

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 9 of 18

 multiple/condition coverage – The epitome of complete
path coverage; statement coverage combined with all
possible consequences of conditions. Note that a
decision may have multiple constituent conditions. (Kit
91)

Deciding upon a path testing technique to employ is based largely
on the intricacy of the program under scrutiny. (Royer 104)
Obviously, it would be silly to utilize multiple/condition coverage on
an application with several thousand statements in its source code
and a dozen conditions for each of many decisions.
Good judgment must be used when deciding which path testing
technique should be applied; these kinds of choices are frequently
the subjects of review meetings.

Path testing is a powerful tool for program verification. Unfortunately, there
are problems that path testing is unable to solve. Such weaknesses of the
white-box test design method will be highlighted in the next subsection.

Issues in Structural Testing

In some PC programs that were released in the early eighties, a
bug existed which path testing would have neglected to uncover.
Hitting the space bar during the startup of the programs would force
a cold reboot disk operations were performed while hardware
interrupts (more specifically, the one responsible for the space bar)
were enabled. The interrupt was an unforeseen action so no
interrupt handling code was written. (Falk, Kaner, and Nguyen 211)
The preceding was an example of a race condition. The
programmer assumed that an event wouldn’t occur during the time
interval for program initialization. Timing-related errors are one of
the many issues that arise when putting structural testing under
consideration.

Race conditions

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 10 of 18

As shown above, a race condition bug comes about when a
programmer makes a presumption about the order of events
that take place during execution. As a demonstration, take
two events, event one and event two; event one almost
always happens before event two because of the logical
organization of program instructions. Race conditions take
place when the coder presumes that event one will definitely
take place before event two. (Falk, Kaner, and Nguyen 421)
Hopefully, the author will apprehend that the occurrence of
event two before event one can happen under uncommon
circumstances.

Deprecation and Unsupported Code

If a project phases out a feature (so-called deprecation) or
retains code that isn’t intended to be supported in current or
future releases, then a costly “high maintenance test case”
becomes evident. This matter can be avoided by maintaining
compatibility. (Kit 114) Notice that this issue can increase
cost even for a non-commercial development initiative
because it squanders time.

Peaceful Co-Existence

White-box testing cannot determine if a given application will
conflict with other software on a computer. Program
developers cannot know what software may be installed on a
user’s computer. (Falk, Kaner, and Nguyen 421) Two or
more programs may overwrite each other’s data on disk.
There can be many possibilities for resource contention.
Concurrently executing processes may inadvertently
compete for the right to access the same processor.

Hardware Inconsistencies

Idiosyncrasies of underlying hardware can cause problems
in software. (Falk, Kaner, and Nguyen 421) If the software is
portable, it is highly probable that the programmers and/or
testers will not have immediate access to all hardware

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 11 of 18

configurations that the software will operate under. Hardware
inconsistencies are usually exposed during validation.

Notice that these issues can usually be revealed by black-box
testing techniques. For example, evidence of race conditions can
be stumbled upon during the volume and load/stress testing forms
of black-box design. (Kit 101) Additionally, it is difficult to simulate
actual end-user usage with white-box testing because most
software users are ignorant of source code. Irregardless, white-box
test design is a very potent method of testing software. A tester that
utilizes path testing has a chance at being extremely successful at
locating bugs.

In practice, it is desirable to use both methods so that testing is not limited by the
shortcomings implicit in one or the other. If you know something about the inside
of a program you can test it better from the outside and vice versa. The terms
gray-box and translucent-box specify the intermingling of white-box and black-
box test design methods. Take care not to confuse the two with static and
dynamic analysis. Static analysis studies structure. Dynamic analysis surveys
functional properties. (Falk, Kaner, and Nguyen 46) White-box testing is a form of
static analysis but may at the same time perform dynamic analysis. Black-box
testing is strictly dynamic.

The Project Life Cycle

The discrete steps inherent in the software development process are termed the
project life cycle. The conventional definition of project life cycle is generalized
more or less and not all programs follow it exactly. The project life cycle must be
understood in order to recognize software testing as a whole. It can be used as a
guide to determine the appropriate type of software testing needed. According to
Royer the steps in the project life cycle are:

 Requirements Definition
 Top-level Design
 Detailed Design
 Coding and Unit Testing
 Component Integration and Testing
 Configuration Item (CI) Level Testing (16-17)

Note that the last half of the cycle is a direct test of the software’s completeness.
Although it may not involve physically testing a piece of software, each step is
essential to the software testing process. The steps are detailed below.

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 12 of 18

Requirements Definition

The requirements definition step of the project life cycle is simply a
statement of the problem. Once the groundwork for the problem has been
laid out, the project team may consider a possible solution. (Royer 17)
After an agreeable solution is devised, top-level design can begin.

Top-level Design

During the top-level design step, necessary interfaces external and
internal to the program are defined. These interfaces take on a number of
different forms; for instance, interfaces between individual software
components or interfaces between the software and a user. This step may
be accompanied by the composition of documents which specify the
required interfaces and other architectural necessities. A document of this
type is sometimes called a Software Design Document (SDD) or Top-
Level Design Document (TLDD). These documents may include
schematics such as data flow diagrams. (Royer 18)

Data Flow Diagrams

A data flow diagram allows a designer to visualize data transfer or
message-passing in a computer system through symbolic
representation. An example of a data flow representation is UML,
the Unified Modeling Language (Unified). Data flow diagrams are to
programmers as blueprints are to drafting artists.

It is important to note that the software still needs to be tested even
though it has manifested itself only in the form of design documents. After
a preliminary design is completed, it must be tested against the true
intentions of the project. A preliminary design review (PDR) involving
technical and marketing staff may be held with a customer concerning the
top-level design. (Royer 18) This design review can be thought of as a
form of white-box static analysis because of access to structural
definitions (design documents) and the absence of program execution.

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 13 of 18

Detailed Design

Also known as low-level design, detailed design more formally specifies
the interfaces established by the top-level design step. These elaborated
specifications are documented in an SDD or Low-Level Design Document
(LLDD). The LLDD provides a technical run-down of system units. The
relevant information for each individual unit is also kept in places such as
a Software Development File (SDF), Unit Development Folder (UDF) or a
programmer’s notebook. SDF’s list information a software engineer needs
to be aware of in order to develop a given portion of a project. Detailed
design should be tested by an internal review with participating personnel.
A customer could be invited to a separate Critical Design Review (CDR).
(Royer 18-19) Some sort of review is necessary for proper verification of
this step.

Coding and Unit Testing

Coding takes place when a programmer converts SDF information into a
computer language. This entails lost of white-box testing in the forms of
“code walkthrough” and “peer review” after all compile-time errors have
been resolved. Code walkthrough is the personal proofreading of code by
the author and peer review is proofreading by others. This proofreading
will reduce potential run-time errors before unit testing. Unit testing
executes the unit’s code with respect to specific test data and test cases.
After unit testing is completed the particular program unit’s code is kept
under some sort of configuration control so that the developers of other
components are mindful of the status of the unit in question. (Royer 19)

Component Integration and Testing

Component Integration and Testing checks the correctness of interfaces
between separate units or components. If they fail to verify, the unit
probably needs to be modified and unit tested again. (Royer 20) Observe
the variety of ways in which a component may be integrated:

 Top-down
o Breadth-first
o Depth-first

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 14 of 18

 Bottom-up
 Mixed

o Sandwich (Muccini)

Top-down

Components can be categorized as high-level, middle-level, low-
level, etc. based on their location in a sequence of procedure calls.
Top-down integration verifies high-level procedures, first. (Muccini;
Demillo et al. 22-23) This is done by including dummy procedures
called stubs which emulate the functionality of the lower-level
procedures. (Royer 142) Stubs are less complex than the real
procedures so they are easier to prove correct. The top-down
approach does not mutually exclude testing and integration like
bottom-up and may improve programmer morale by allowing him or
her to preview the product before it evolves into a fully-functional
form. (Demillo et al. 19-22) Two widely used styles of integrating
program pieces are breadth-first and depth-first. (Muccini)

Breadth-first

Imagine if a hierarchical program or subprogram were to be
represented as a tree with the main function taking the form
of the root and other vertices representing various modules.
Breadth-first top-down integration tests modules that are a
given distance from the root in combination with one
another. Vertices of equal distance are said to be on the
same level of a tree. It is rather elegant because each
individual end-to-end path need not be considered.

Depth-first

Depth-first top-down integration can be represented as a
directed graph. Stubs are replaced with modules that are
successively deeper in the call sequence for each parent
module. It is apparent that modules may be integrated and
tested more than once. This accounts for the fact that
modules may be called at different levels in a call stack. In
fact, many programs do not have a hierarchical top-down
design methodology. In summary, each module is tested by

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 15 of 18

continually replacing stubs with actual program units.
(Muccini)

Bottom-up

The bottom-up approach to integration testing is best when the
meat of a program is in components at a low-level of control.
(Demillo et. Al. 22-23) Drivers treat the current unit as an individual.
Drivers are special units that verify other units by offering them test
data. They can be thought of as test harnesses. (Muccini) A
disadvantage of bottom-up integration is that the final program
cannot be foreknown as with the top-down approach. (Royer 143)

Mixed

Utilizing a mixture of top-down and bottom-up integration testing is
practical because it allows the development process to enjoy the
advantages of both.

Sandwich

Sandwich is a particular type of mixed testing which pairs
together the results of comprehensive top-down and bottom-
up integration. This type of testing suffers the disadvantage
of neglecting middle-level procedures (Mosley)

The top-down and bottom-up integration approaches are regarded as
incremental testing strategies. (Demillo et. al 19) There is both manual
and automated component integration. As might be expected, someone or
something can integrate program or system components by the top-down
or bottom-up approaches using black or white box test design methods
with static or dynamic analysis.

CI Level Testing

This final stage of testing tests the project as a whole. It concludes with
the successful demonstration of a working piece of software, but actually
extends itself indefinitely in the form of validation.

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 16 of 18

Keep in mind that project life is defined in terms of a cycle. Hence, it has the
property that it may revert back to a previous step. This happens when a step
fails. A step fails if there is an unsuccessful verification. Verification is the
process of confirming that the current step in the project life cycle complies with
previous step or steps. A more specific type of verification called validation tests
a “final product” (the term is being used loosely) that has been released to the
public to be sure that it fits specifications. (Royer 17)

Conclusion

All matters in software testing are offspring of the fundamental theorem of
computing. Also known as Alan Turing’s halting theorem or halting problem, it
shows why one cannot write a program to test if an arbitrary program of arbitrary
input will eventually halt; even if this were possible, the program could show to be
self-contradictory. (Abelson, Sussman, and Sussman 387) The halting problem
demonstrates why software testing is a problem. It is impossible to show that an
arbitrary program is correct for arbitrary inputs. Conversely, by making good
design and testing choices, a program can be shown to be incorrect. Be sure to
choose your software testing tools and techniques wisely.

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 17 of 18

Bibliography

Abelson, Harold. Structure and interpretation of computer programs / Harold
 Abelson and Gerald Jay Sussman, with Julie Sussman; foreword by Alan
 J. Perlis. Cambridge, Mass.: MIT Press; New York: McGraw-Hill, 1996.

Ammann, Paul E. Abstracting formal specifications to generate software tests
 via model checking [microform] Paul E. Ammann, Paul E. Black.
 Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration,
 National Institute of Standards and Technology, 1999.

Ammann, Paul E. A specification-based coverage metric to evaluate test sets
 [microform] Paul E. Ammann, Paul E. Black. Gaithersburg, MD: U.S.
 Dept. of Commerce, Technology Administration, National Institute of
 Standards and Technology, 1999.

Demillo, Richard A. et al Software Testing and Evaluation. Menlo Park, Calif:
 Benjamin/Cummings Pub. Co., 1987.

Goldfine, Alan H. Experience report: comparing an automated conformance test
 development approach with a traditional development approach
 [microform] Alan Goldfine, Gary Fisher, Lynne Rosenthal. Gaithersburg,
 MD: U.S. Dept. of Commerce, Technology Administration, National
 Institute of Standards and Technology, 1998.

Goodaire, Edgar G. and Parmenter, Michael M. Discrete Mathematics with Graph
 Theory. 2nd ed. Upper Saddle River, NJ: Prentice Hall Pub. Co., 2002.

Kaner, Cem et al. Testing computer software / Cem Kaner, Jack Falk, Hung
 Quoc Nguyen. New York: Van Nostrand Reinhold, 1993.

Kit, Edward. Software testing in the real world: improving the process /
 Edward Kit; edited by Susannah Finzi. Wokingham, England: Reading,
 Mass.: Addison-Wesley Pub. Co., 1995.

Muccini, Henry. “Software Testing.” Henry Muccini.

 <http://www.henrymuccini.com/Testing.htm> (Dec. 15 2002)

Derek Callaway

ENGL410-011

December 2002

Semester 02F

Software Testing
Test Design and the Project Life Cycle

Page 18 of 18

Rivest, Raymond. “comp.software.testing Frequently Asked Questions (FAQ)” 1
 Dec. 2002. Online posting. Newsgroup: comp.software.testing. USENET.
 13th Dec. 2002.

Royer, Thomas C. Software testing management: life on the critical path /
 Thomas C. Royer. Englewood Cliffs, N.J.: Prentice Hall, 1993.

“Unified Modeling Language Resource Center.” Rational Software. 2002.

 <http://www.rational.com/uml> (Dec. 10, 2002)

